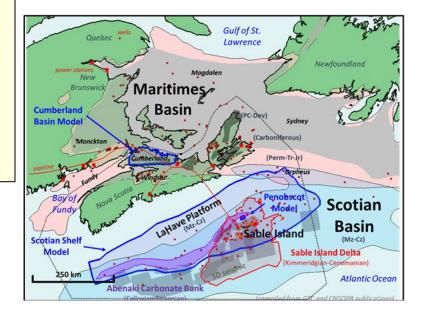
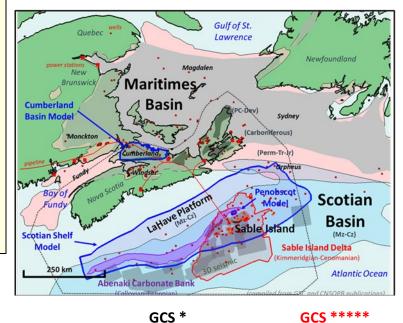
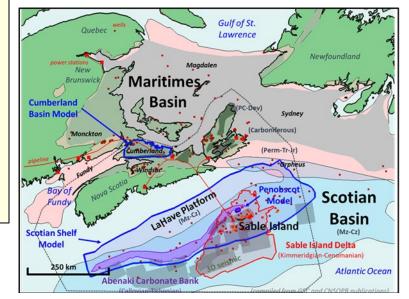
Quantitative Assessments of Subsurface Energy Transition Opportunities in Nova Scotia


February 3rd, **2024**

Bill Richards, Helen Cen, Natasha MacAdam, Trevor Kelly, Adam MacDonald, Fraser Keppie, Carla Skinner, Grant Wach



IPCC Special Report on Carbon Dioxide Capture and Storage (2005). 8,000-55,000 Gt capacity in deep saline aquifers (IEA, 2021) ~ 923 Gt capacity in depleted hydrocarbon fields (GCCSI, 2009)


- **1.** <u>Geological Carbon Storage</u> (Dedicated GCS not EOR or CCUS)
 - **SCOTIAN SHELF DEEP SALINE AQUIFERS**: North Sea scale : 10s-100s Gt
 - NO NEED FOR STRUCTURAL OR STRATIGRAPHIC TRAPPING ---- BUT DO NEED A REGIONAL TOPSEAL
 - Migrating plume leaves CO2 behind ("RESIDUAL TRAPPING") → Buoyancy decreases
 - → Plume stops → CO2 is immobile in pore centres → Immune to seismicity or well failures

- **1.** <u>Geological Carbon Storage</u> (Dedicated GCS not EOR or CCUS)
 - SCOTIAN SHELF DEEP SALINE AQUIFERS: North Sea scale : 10s-100s Gt
 - NO NEED FOR STRUCTURAL OR STRATIGRAPHIC TRAPPING ---- BUT DO NEED A REGIONAL TOPSEAL
 - Migrating plume leaves CO2 behind ("RESIDUAL TRAPPING") → Buoyancy decreases
 - → Plume stops → CO2 is immobile in pore centres → Immune to seismicity or well failures
 - SHELF MARGINS DEPLETED GAS FIELDS: Modest potential: ~ 100 Mt
 - MARITIMES BASIN: Poor potential: low porosity-permeability and risk of fractured seals



- 1. <u>Geological Carbon Storage</u> (Dedicated GCS not EOR or CCUS)
 - SCOTIAN SHELF DEEP SALINE AQUIFERS: North Sea scale : 10s-100s Gt
 - NO NEED FOR STRUCTURAL OR STRATIGRAPHIC TRAPPING ---- BUT DO NEED A REGIONAL TOPSEAL
 - Migrating plume leaves CO2 behind ("RESIDUAL TRAPPING") → Buoyancy decreases
 - → Plume stops → CO2 is immobile in pore centres → Immune to seismicity or well failures
 - SHELF MARGINS DEPLETED GAS FIELDS: Modest potential: ~ 100 Mt
 - MARITIMES BASIN: Poor potential: low porosity-permeability and risk of fractured seals
- 2. <u>Geothermal Power Generation</u> (Not district heating / cooling)
 - MARITIMES: (~17-28°C, poor PHI-K): Emerging opportunities probably closed-loop
 - SCOTIAN SHELF: (25-35°C/km, good PHI-K). Expensive anchored by "Mega-Wind"?

GCS *	GCS *****
Closed Loop ***	Closed Loop *
Open Loop *	Open Loop ***

- 1. <u>Geological Carbon Storage</u> (Dedicated GCS not EOR or CCUS)
 - SCOTIAN SHELF DEEP SALINE AQUIFERS: Massive Opportunity: 10s-100s Gt
 - NO NEED FOR STRUCTURAL OR STRATIGRAPHIC TRAPPING ---- BUT DO NEED A REGIONAL TOPSEAL
 - Migrating plume leaves CO2 behind ("RESIDUAL TRAPPING") → Buoyancy decreases
 - → Plume stops → CO2 is immobile in pore centres → Immune to seismicity or well failures
 - SHELF MARGINS DEPLETED GAS FIELDS: Modest potential: ~ 100 Mt
 - MARITIMES BASIN: Poor potential: low porosity-permeability and risk of fractured seals
- 2. <u>Geothermal Power Generation</u> (Not district heating / cooling)
 - MARITIMES: (~17-28°C, poor PHI-K): Emerging opportunities probably closed-loop
 - SCOTIAN SHELF: (25-35°C/km, good PHI-K). Expensive anchored by "Mega-Wind"?
- 3. Compressed Air & Hydrogen Storage in Salt Caverns
 - **CUMBERLAND BASIN:** Outstanding opportunities load balancing wind power
 - SCOTIAN SHELF: Significant potential as part of "Mega-wind" Project
 - CAES = Compressed Air Energy Storage; UHS = Underground Hydrogen Storage

GCS ***** Closed Loop * Open Loop *** CAES UHS ****

- Where are we operationally?
- What are our best opportunities?
- Where are we technically?
- What's needed?
- How do we move forward?

- What's needed?
- How do we move forward?

Systematic Progressive Studies:

Conceptual → Qualitative → Quantitative → Economic → Policy & Regs → Commercial

Play & Prospect Inventory:

Play → Lead → Prospect → Drillable Prospect → Success / Failure

Resource Inventory:

" Prospective" → "Contingent" → "Commercial" → "Stored"

High-Level View: GCS Globally & in Canada

- Global GHG Emissions ~ 46 Gtpa* CO₂e Canada ~672 Mtpa; NS ~14.9 Mtpa (Gov. Canada; CER, 2020)
- Current Global CO₂ Storage 43 Mtpa (~30,000 tonnes CO₂ & H2S stored at Deep Panuke)
- Need ~7.5 Gtpa storage by 2050* to meet international obligations
- 1 Mtpa* is the capacity of 1 world-class carbon storage well (Sleipner, offshore Norway)
- 1 Mtpa is also the capacity of a major carbon capture plant (Boundary Dam ~\$500 million)*

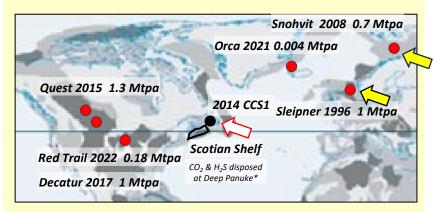
Tuft's Cove, Halifax, 500 MW

* 10⁹ tonnes per annum * 10⁶ tonnes per annum * *MIT factsheet, 2016* * *GCCSI, 2022*

* IEA / GCCSI, 2023

High-Level View: GCS Globally & in Canada

- 7.5 Gtpa would require ~ 15,000 wells worldwide at ~0.5 Mtpa per well
- Pro-rated: ~220 wells in Canada (5 in Nova Scotia).
 - Capture & Storage would be expensive: ~\$110 Billion capture. ~120 Billion infrastructure & wells.
 - **Revenues could be higher** ~ \$420 Billion at \$125 per tonne for 30 years (Carbon Price C\$170 in 2030)
 - Canada used 42.5 billion litres of gasoline in 2022


- 220 capture facilities at \$500m each
- 220 wells at \$50m each
- \$10 billion infrastructure every 20 wells

	2020	Storage	Storage	Rate	Wells			CAP	EX			CAPEX	Revenue
	Emissions	7.6/46		per well		Capt	ure	W	ells	Infrasti	ructure	Total	30y - \$125/t
	Mtpa		Mtpa	Mtpa		\$B / Mtpa	B / Mtpa \$ Billion		\$ Billion	\$B/20wells \$ Billion			\$ Billion
Canada	672	0.165	111	0.5	222	0.5	111	50	11	10	111	233	416
Nova Scotia	15	0.165	2.5	0.5	5	0.5	3	50	0	10	3	5	9

Where are we operationally?

<u>GCS</u>

- 1 unsuccesful GCS project onshore
 - CCS 1 well in Cape Breton (no PHI-K)
- Sleipner & Snohvit (Norway) are very good analogues for our best opportunity offshore

Operational GCS Facilities (GCSSI, 2022) CCS Propectivity (IPCC, 2005)

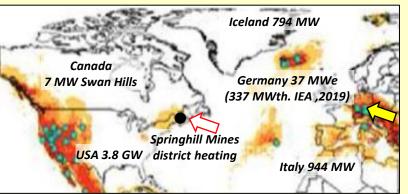
- 30 CCS plants worldwide (43 Mtpa¹)
- Pore-space land-grabs in Alberta & GOM

*estimated 50,000 tonnes CO2 stored DPA: 0.18% of produced gas is H2S
DPA: 3.44% is CO2 (but <3% is sales spec.)
147 BCF cum. prod.
¹ GCSSI 2022; ²2020 figures (CER, 2023)

Where are we operationally?

<u>GCS</u>

- 1 unsuccesful GCS project onshore
 - CCS 1 well in Cape Breton (no PHI-K)
- Sleipner & Snohvit (Norway) are best analogues for our best opportunity offshore


Geothermal Power

- 0 geothermal power generation projects
- Limited by plate tectonics
 - 0 geothermal power plants in Nova Scotia
- North German Basin & Upper Rhine Graben are best analogues (INRS, 2020)

Operational GCS Facilities (GCSSI, 2022) CCS Propectivity (IPCC, 2005)

- 30 CCS plants worldwide (43 Mtpa¹)
- Pore-space land-grabs in Alberta & GOM

Geothermal Power Generation (Statisa, 2023) "Suitability" & Power Plants (Como & Trumpy, 2020)

- 175 power plants worldwide³ (16 GW installed⁴)
- 1 in Canada (CER, 2023)

¹ GCSSI 2022; ²2020 figures (CER, 2023)

³ Wikipedia; Huttrer, ⁴ Huttrer, 2020 (320 x Tuft's Cove)

Where are we operationally?

<u>GCS</u>

- 1 unsuccesful GCS project onshore
 - CCS 1 well in Cape Breton (no PHI-K)
- Sleipner & Snohvit (Norway) are best analogues for our best opportunity offshore

Geothermal Power

- 0 geothermal power generation projects
- Limited by plate tectonics
 - \circ 0 geothermal power plants in Nova Scotia
- North German Basin & Upper Rhine Graben are best analogues (INRS, 2020)

Iceland 794 MW Canada 7 MW Swan Hills Springhill Mines USA 3.8 GW district heating Italy 944 MW

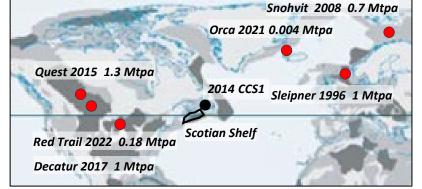
Geothermal Power Generation (Statisa, 2023) "Suitability" & Power Plants (Como & Trumpy, 2020)

- 175 power plants worldwide³ (16 GW installed⁴)
- 1 in Canada (CER, 2023)

Salt Storage

- 1 unsuccessful storage project in Nova Scotia
 - Alton CH4 storage (community objections)
- 2 large-scale analogues for compressed air and

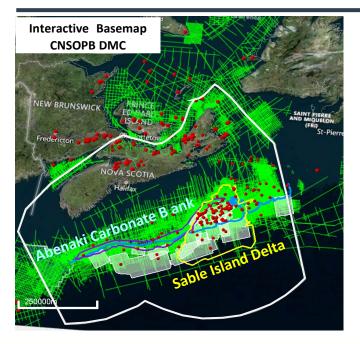
5 hydrogen in Europe & USA Gulf Coast:

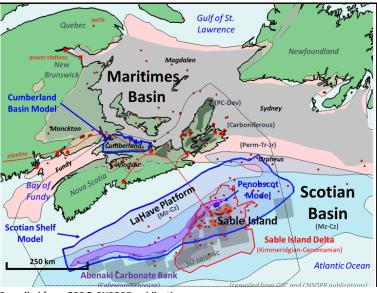

UHS much larger energy storage capacity than CAES

CAES & UHS Energy Storage in Salt Caverns Halite-entraining Basins (Warren, 2010)

- 2 major CAES salt plants worldwide (3.4 GWh)³
- Plus Hydrostor in Ontario (10 MWh)³
- 4 UHS salt plants worldwide (>202 GWh).⁵
- + 3 in aquifers, + 2 in depleted gas reservoirs⁵
- ~750 Total Underground Storage facilities (2017⁶)
- 104 salt caverns, 75 aquifers. 492 depleted fields

⁵ Jahanbakhsh, 2024; ⁶ Cedigaz, 2017



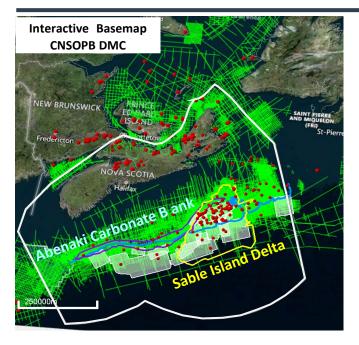

Operational GCS Facilities (GCSSI, 2022) CCS Propectivity (IPCC, 2005)

- 30 CCS plants worldwide (43 Mtpa¹)
- Pore-space land-grabs in Alberta & GOM

³ Wikipedia; Huttrer, ⁴ Huttrer, 2020 (320 x Tuft's Cove)

Where Are We Technically?

Compiled from GSC & CNSOPB publications

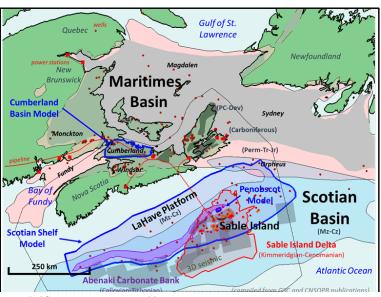

Excellent regional data base

- ~470 wells (>27,000 drillholes in NS database)
- **26** HC fields, seeps, salt mines, coal mines
- 2D & 3D seismic data

Excellent legacy studies and modern studies

- SOEP, LASMO, ENCANA Field development plans
- GSC, NS DNRR, CNSOPB, OERA / NZA
- Beicip-Franlab, INRS, Petrel-Roberston, AEGIR, Dunsky
- Dalhousie, St. Mary's etc

Where Are We Technically?

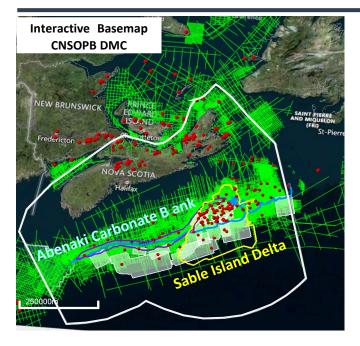


Excellent regional data base

- ~470 wells
- 26 HC fields, seeps, salt mines, coal mines
- 2D & 3D seismic data

Excellent legacy studies and modern studies

- SOEP, LASMO, ENCANA Field development plans
- GSC, NS DNRR, CNSOPB, OERA / NZA
- Beicip-Franlab, INRS, Petrel-Roberston, AEGIR, Dunsky
- Dalhousie, St. Mary's etc

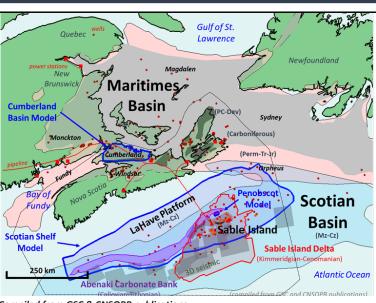


Compiled from GSC & CNSOPB publications

Key Online Data Bases

- CNSOPB Data Management Centre
- GSC BASIN DATA BASE
- Rock Quality Maritimes Basin: GSC Bibby & Shimeld, 2000
- Rock Quality Scotian Basin: Beicip PFAs 2011, 16,17,23

Where Are We Technically?



Excellent regional data base

- ~470 wells
- 26 HC fields, seeps, salt mines, coal mines
- 2D & 3D seismic data

Excellent legacy studies and modern studies

- SOEP, LASMO, ENCANA Field development plans
- GSC, NS DNRR, CNSOPB, OERA / NZA
- Beicip-Franlab, INRS, Petrel-Roberston, AEGIR, Dunsky
- Dalhousie, St. Mary's etc

Compiled from GSC & CNSOPB publications

Key Data Bases

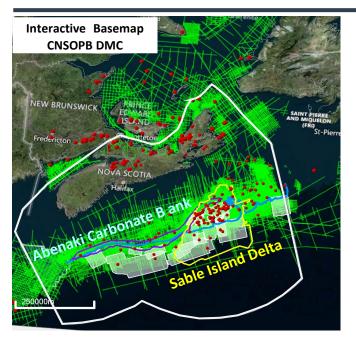
- CNSOPB Data Management Centre
- GSC BASIN DATA BASE
- Rock Quality Maritimes: GSC Bibby & Shimeld, 2000
- Rock Quality Scotian: Beicip PFAs 2011, 16,17,23

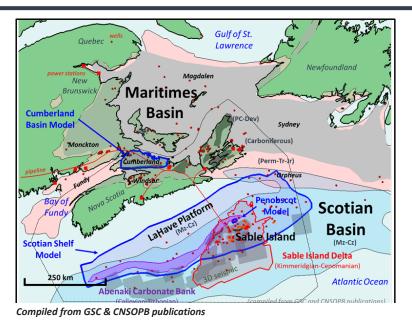
Key Regional Studies

Carbon Storage Studies: mostly Qualitative

- $\circ~$ Bachu, 2003, IPCC, 2005; Wach et al, 2010, GSC 2023,
- Exceptions: dynamic modeling pre-CCS1 & O'Connor, 2019; 2021 DNRR, Dal., EAGE static models
- **Geothermal Studies: mostly Quantitiative**
- Grasby et al, 2012; INRS, 2020; Dunsky 2023 (GSHP)
- Onshore Salt: Boehner, 1986;
- Offshore Salt: CNSOPB SCOPE & PFAs
- Load-balancing idea: Dusseault & Wach (2020)

Maritimes Basin:

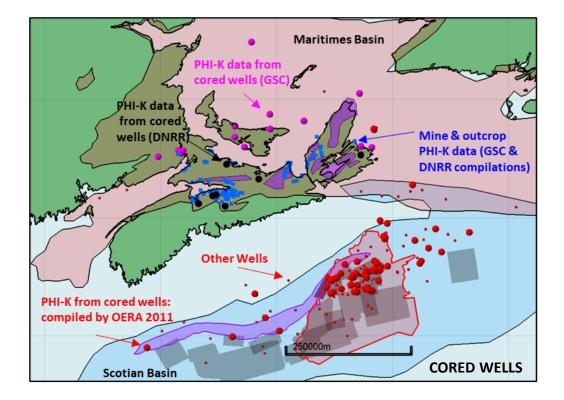

o e.g., Gibling et al, 2019. 2016 Sydney Basin PFA


o DNRR well & seismic schedules, geol. mapping

Magdalen Basin:

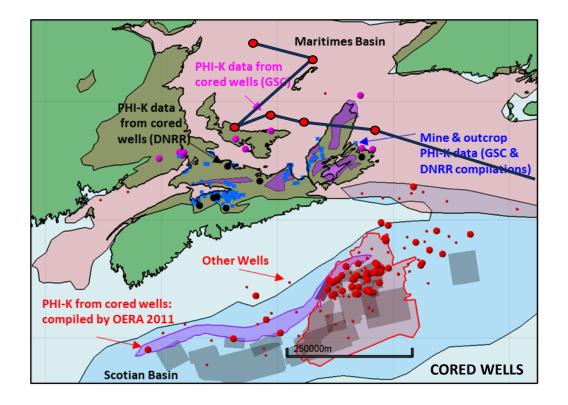
- o e.g., GSC (Atkinson et al), 2023
- Sydney Basin:
- o e.g., OERA Beicip- Franlab PFA, 2016
- Fundy Basin:
 - o e.g., Wade et al, 1996
- Cumberland Basin:
- $\circ~$ e.g., Waldron et al, 2005 & 2013
- Scotian Basin:
 - o Awesome 1991 GSC Atlas & 2011 Beicio-Franlab PFA
- $\,\circ\,$ Almost all shelf exploration wells drilled before 1991

What's Needed?

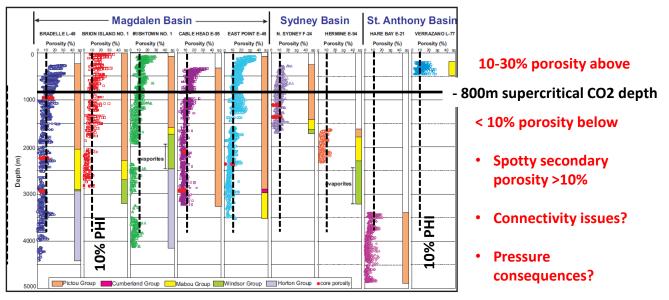

Static & Dynamic Geocellular Models, Maps & Quantitative Assessments

Energy Transition "Play Elements"

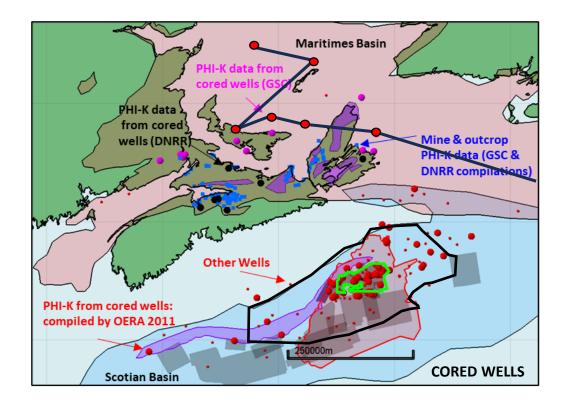
- Rock Quality: Reservoirs / Aquifers: effective porosity-permeability (PHI-K),
- Rock Quality: Seals / Fractures
- Structure
- Temperature
- **Pressure** (+ need <u>pressure</u> management regulations in addition to pore-volume <u>regs.</u>)


Reservoirs / Aquifers (DNRR & Dalhousie) – Legacy Data

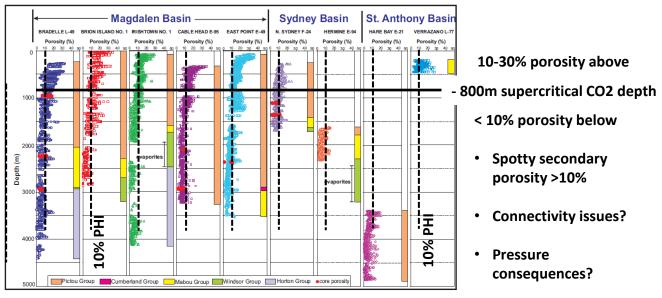
- Lots of core data and petrophysics
- Nice depositional pattern maps from wells & seismic
- Need models & porosity-m and permeability-m maps


Reservoirs / Aquifers (DNRR & Dalhousie) – Legacy Data

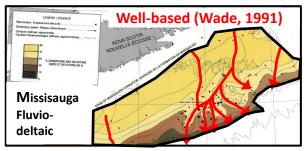
- Lots of core data and petrophysics
- Nice depositional pattern maps from wells & seismic
- Need models & porosity-m and permeability-m maps

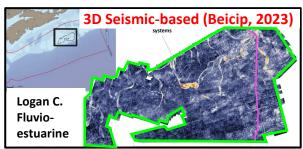

Maritimes Example – Core & Log Porosity : Hu and Dietrich (2010)

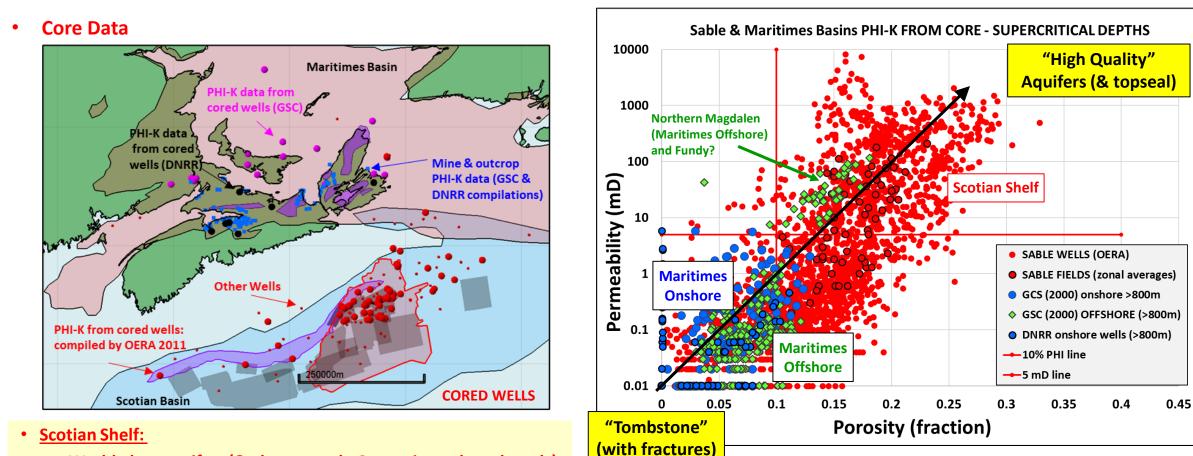
- Rapid porosity degradation with depth sporadic secondary porosity
- Lack of connectivity problematic for GCS (pressure) & open-loop (recharge)


Reservoirs / Aquifers (DNRR & Dalhousie) – Legacy Data

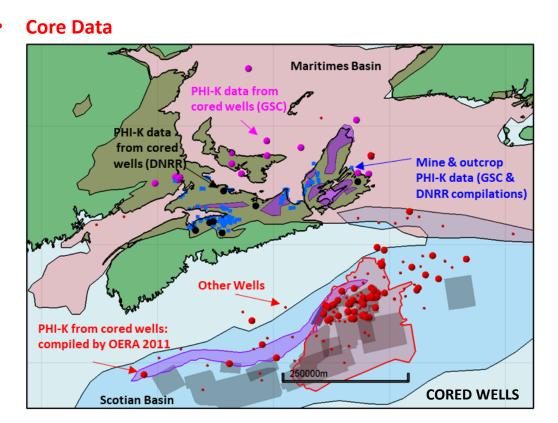
- Lots of core data and petrophysics
- Nice depositional pattern maps from wells & seismic
- Need models & porosity-m and permeability-m maps


Maritimes Example – Core & Log Porosity : Hu and Dietrich (2010)

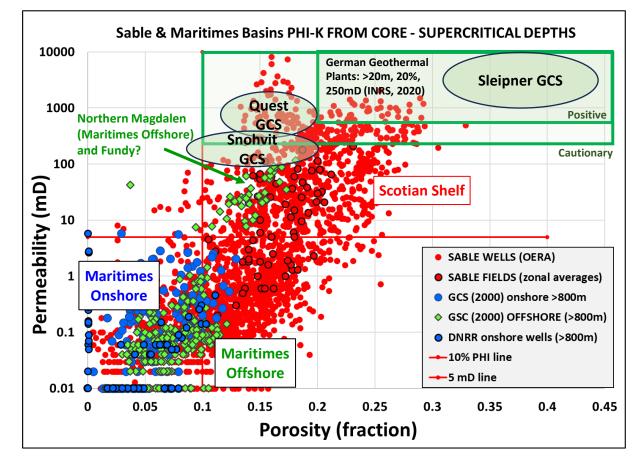

- Rapid porosity degradation with depth sporadic secondary porosity
- Lack of connectivity problematic for GCS (pressure) & open-loop (recharge)


Scotian Shelf Examples: 1991 GSC Atlas & 2023 Beicip-rramap

- Excellent regional structure & depositional patterns
- Channel systems might provide updip leakage conduits for CO₂

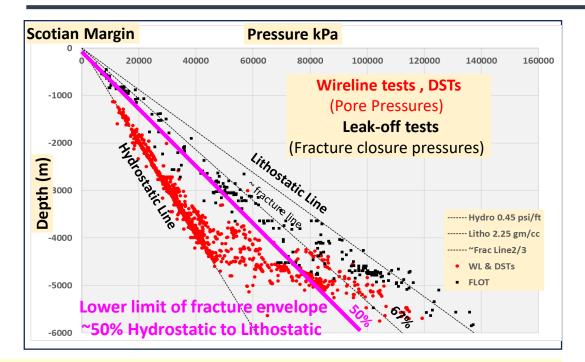


Reservoirs / Aquifers (DNRR & Dalhousie) – PHI-K Data from Cores



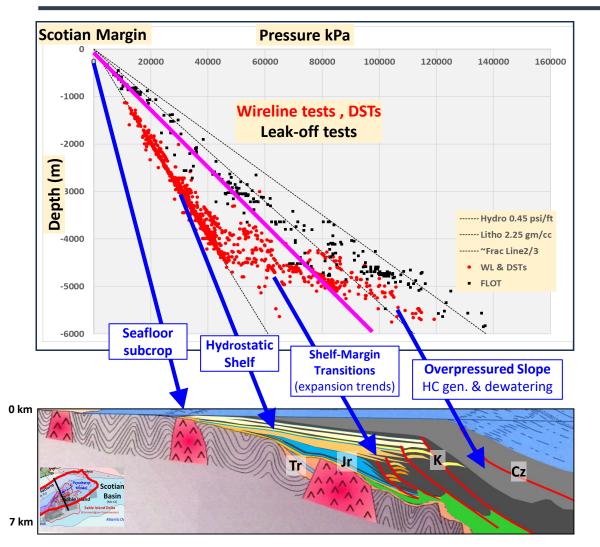
- World-class aquifers (& also topseal Cenozoic muds and marls)
- Maritimes Basin:
 - Challenged aquifers (PHI-K) and seals (open fractures?)
 - o indirect evidence from & pressure / stress data

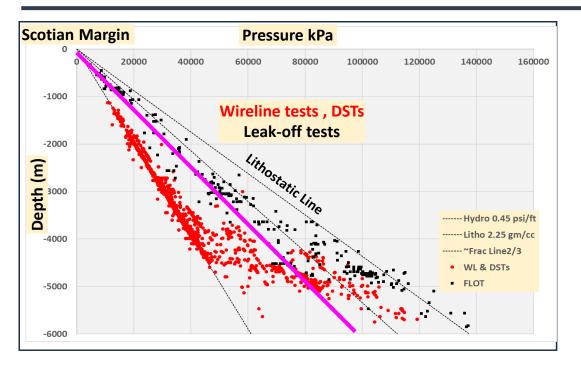
Reservoirs / Aquifers (DNRR & Dalhousie) – Best Practices / Operational Projects ²¹

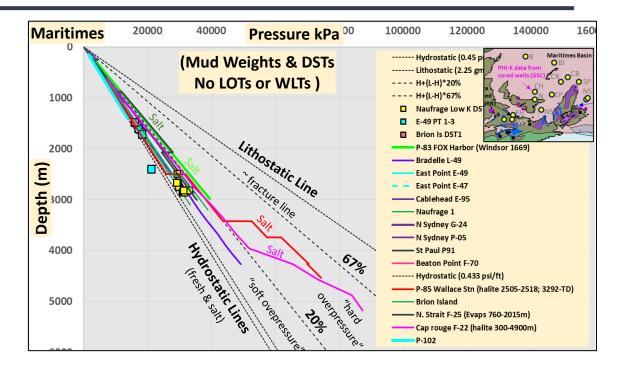

- Scotian Shelf:
 - World-class aquifers (& also topseal Cenozoic muds and marls)
- Maritimes Basin:
 - Challenged aquifers (PHI-K) and seals (open fractures?)
 - \circ indirect evidence from & pressure / stress data

BEST PRACTICE FOR THE STORAGE OF CO2 IN SALINE AQUIFERS

Chadwick et al, 2008. (BGS & NERC & multiple organizations) Positive Indicators : >50m, >20% phi, > 500mD Cautionary Indicators: <20m; <10% phi, <200mD

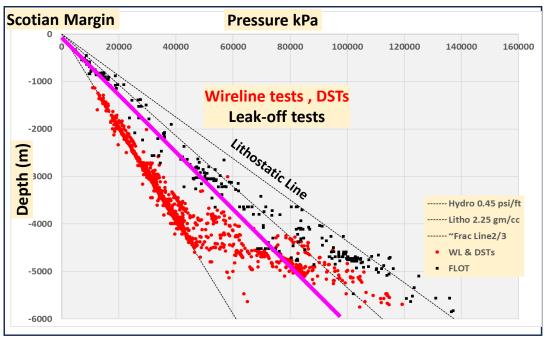

Pressure Data - Scotian Margin

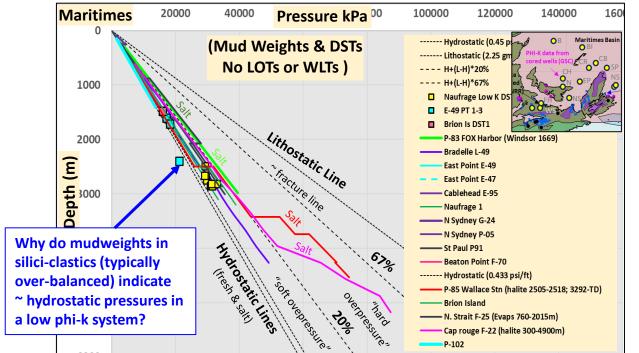

Scotian Margin:


- Excellent data set wireline tests & leak-off tests
- Leak Off Tests indicate lower limit of fracture envelope may be ~ ½ way between hydrostatic and lithostatic lines
- Important RATIO for GCS injectivity and containment and capacity

Pressure Data - Scotian Margin

Pressure Data - Scotian Margin & Maritimes Basin

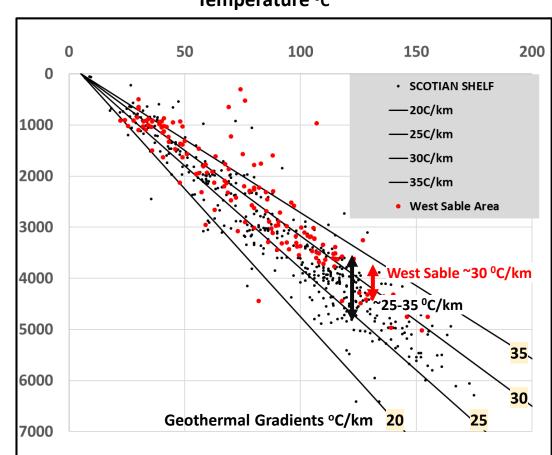

Scotian Margin:


- Excellent data set wireline tests & leak-off tests
- Leak Off Tests indicate lower limit of fracture envelope may be ~
 ½ way between hydrostatic to lithostatic lines
- Well understood system from pressure entry to exit

Maritimes Basin (from wireline log headers & well reports):

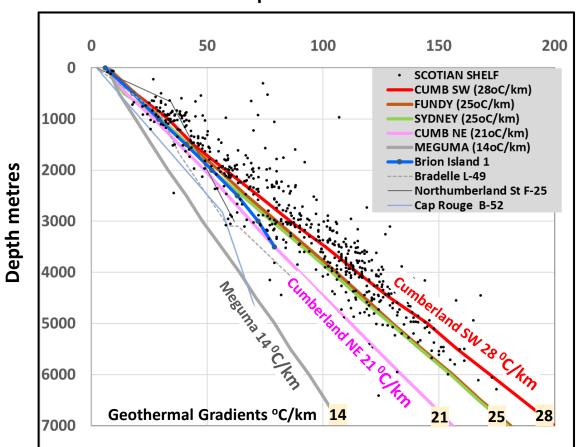
Much more limited data set – harder to understand

Pressure Data - Scotian Margin & Maritimes Basin


Scotian Margin:

- Excellent data set well understood system
- Leak Off Tests indicate lower limit of fracture envelope may be ~
 ½ way between hydrostatic to lithostatic lines
- Well understood system from pressure entry to exit

Maritimes Basin (from wireline log headers & well reports):

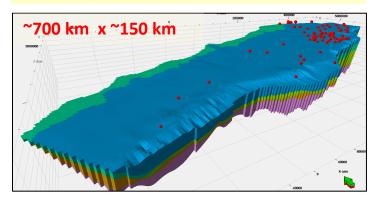

- Much more limited data set harder to understand
- Long-term Darcy equilibration following structural inversion (200 m.y. +)?
- Pervasive or local open fractures?
- Trans-tensional segments in strike-slip regime or salt-related extension
- Risk too fractured for GCS containment?
 - not enough fracturing for open-loop geothermal recharge?

Temperature Data - Scotian Shelf, Maritimes Basin and Meguma

Temperature °C

Temperature °C

Scotian Shelf:


Depth metres

- Edited but uncorrected from BASIN
- ~25-35 °C/km (underestimate)
- West Sable area ~30 °C/km

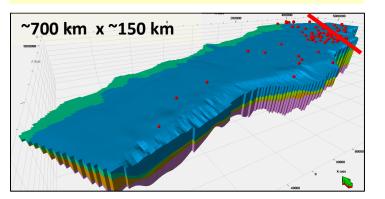
- Meguma And Maritimes Basin (INRS Report, 2020):
- Maritimes 21-28 °C/km (corrected)
- Brion Island (Raymond et al, 2022)
- Magdalen wells BHTs from logs

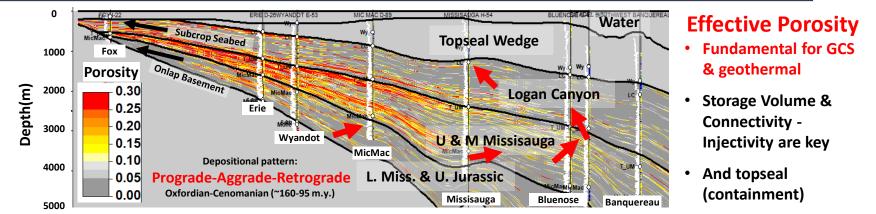
Scotian Shelf Model

• Multiple versions Dal., DNRR, EAGE

Structural Framework

- Built from published OERA 2011 & GSC 1991 horizons
- 7 horizons, 6 zones, 750 layers
- 2 km x 2 km; 32 million cells

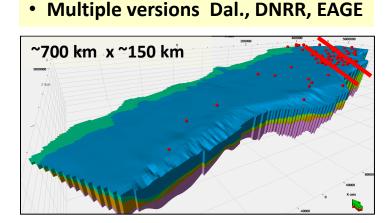

Porosity - from 80 + wells & core


- Populated with sonic porosity
- ~ 60% of pore volume in Sable Island Delta
- applied Vshale & 10% phi cut-offs

- Populated from GSC BASIN data base
- Temps not corrected (underestimated)
- Pressures from mud weights (overestimated)

Scotian Shelf Model

• Multiple versions Dal., DNRR, EAGE


Structural Framework

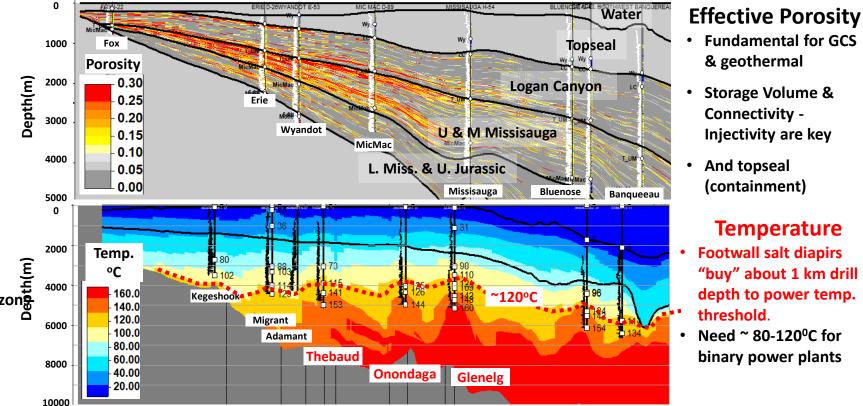
- Built from published OERA 2011 & GSC 1991 horizons
- 7 horizons, 6 zones, 750 layers
- 2 km x 2 km; 32 million cells

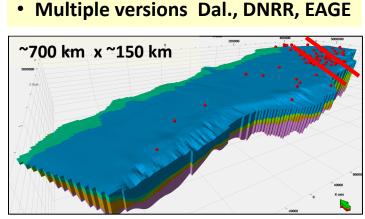
Porosity - from 80 + wells & core

- Populated with sonic porosity
- ~ 60% of pore volume in Sable Island Delta
- applied Vshale & 10% phi cut-offs

- Populated from GSC BASIN data base
- Temps not corrected (underestimated)
- Pressures from mud weights (overestimated)

Structural Framework


Scotian Shelf Model

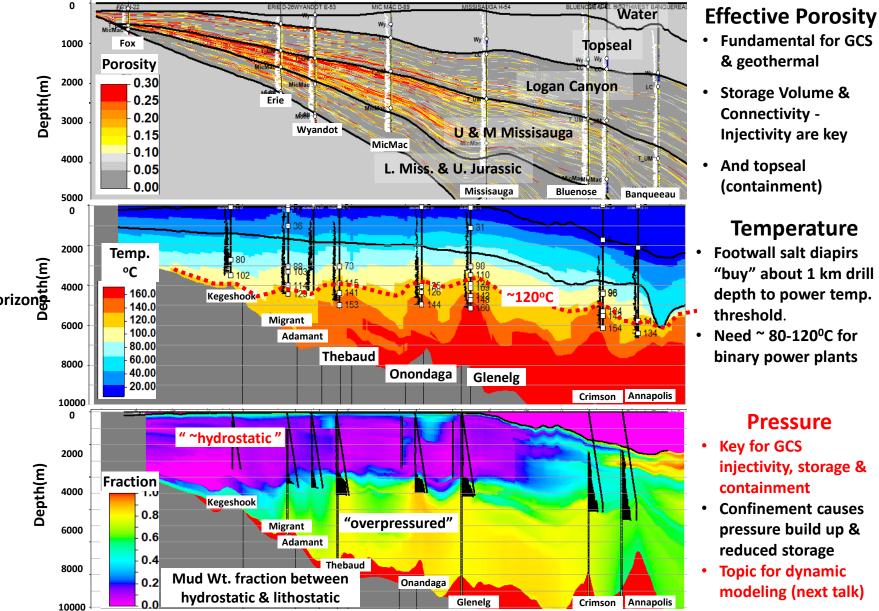

- tructural Framework मु Built from published OERA 2011 & GSC 1991 horizon •
- 7 horizons, 6 zones, 750 layers •
- 2 km x 2 km; 32 million cells •

Porosity – from 80 + wells & core

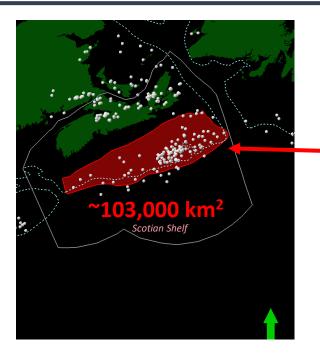
- Populated with sonic porosity
- ~ 60% of pore volume in Sable Island Delta •
- applied Vshale & 10% phi cut-offs •

- Populated from GSC BASIN data base •
- Temps not corrected (underestimated)
- Pressures from mud weights (overestimated)

Structural Framework

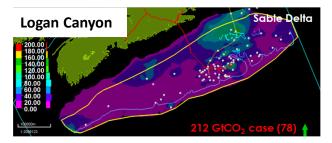

Scotian Shelf Model

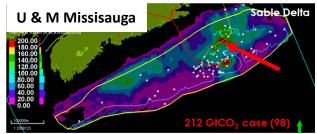
- tructural Framework मु Built from published OERA 2011 & GSC 1991 horizon क्व
- 7 horizons, 6 zones, 750 layers
- 2 km x 2 km; 32 million cells

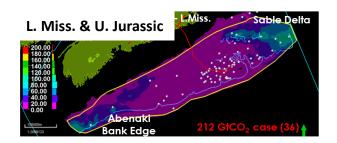

Porosity – from 80 + wells & core

- Populated with sonic porosity
- ~ 60% of pore volume in Sable Island Delta
- applied Vshale & 10% phi cut-offs

- Populated from GSC BASIN data base
- Temps not corrected (underestimated)
- Pressures from mud weights (overestimated)

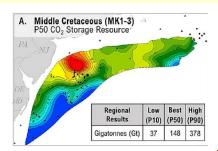

Scotian Shelf: 3D Modeling (DNRR & Dal. 2021)

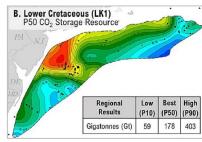


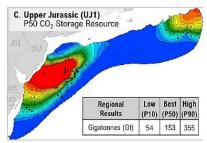

2021: N.S. Preliminary Atlases

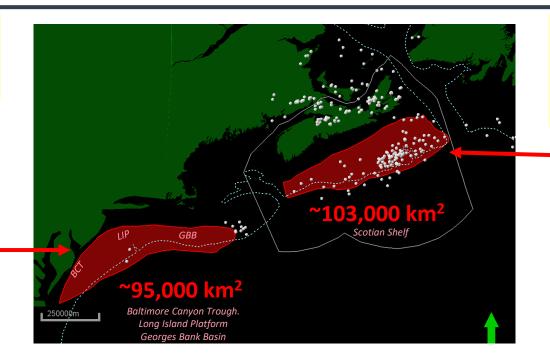
• Porosity-metre maps

• Up to 200 por-m in U&M Miss. Equivalent to 1000m at 20% or 20 times Hibernia reservoir

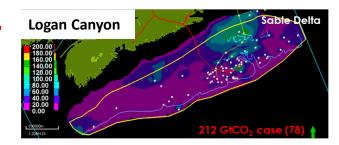


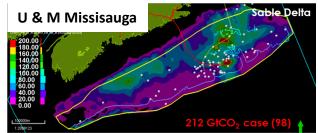

- Dal/DNRR: Low-Medium-High Ranges (with & without cut-offs)
- Dal/DNRR: 7 151 1280 Gt CO₂ (area-thickness based)
- NS DNRR: 15 154 618 Gt CO₂ (model based with cut-offs)
- Base Case similar to North Sea

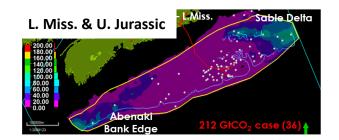

Scotian Shelf: compared to "Doppelganger" NE USA Study


2019: US DOE / Batelle Atlas

- Resource Density Maps
- Mt CO_2 / km²

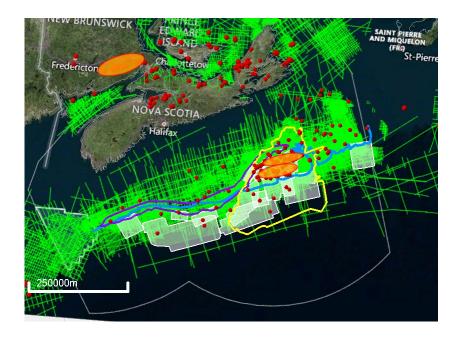


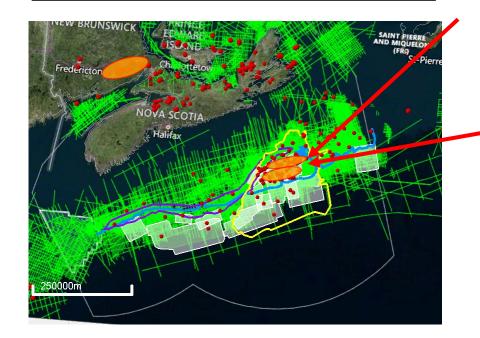



- Dal/DNRR: Low-Medium-High Ranges (with & without cut-offs)
- Dal/DNRR: 7 151 1280 Gt CO₂ (area-thickness based)
- NS DNRR: 15 154 618 Gt CO₂ (model based with cut-offs)
- Base Case similar to North Sea
- US DOE: 150 479 1136 Gt CO₂ (P10, P50, P90)
- Same geology, same methodology, similar results
 - Higher storage efficiency factors & less stringent depthporosity cutoffs

2021: N.S. Preliminary Atlases

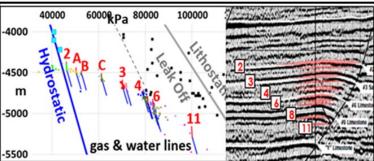
- Porosity-metre maps
- Up to 200 por-m in U&M Miss. Equivalent to 1000m at 20% or 20 times Hibernia reservoir




Nova Scotia & New Brunswick GCS in "Depleted" Fields

- Total GCS 113 Mt
 - Potentially useful, but very small by world standards
- GOM 15 Gt; UK 8 Gt; Norway 13 Gt
 - From atlases
- Calculated via material balance:
 - Produced volumes (CNSOPB)
 - Formation Volume Factors (CNSOPB)
 - 75 % storage efficiency (IEA)

Nova Scotia & New Brunswick GCS in "Depleted" Fields


- Total GCS 113 Mt
 - Potentially useful, but very small by world standards
- GOM 15 Gt; UK 8 Gt; Norway 13 Gt
 - From atlases
- Calculated via material balance:
 - Produced volumes (CNSOPB)
 - Formation Volume Factors (CNSOPB)
 - 75 % storage efficiency (IEA)

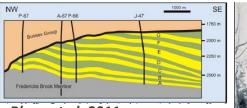
Sable Gas Project (5 fields)

- Shelf-margin rollover anticines above listric faults
- Best options: simple shallow hydrostatic reservoirs
- Alma (31 Mt) & N.Triumph (15 Mt) S. Venture (16 Mt) & Venture Sand 2
- Venture (21 Mt) & Thebaud (21 Mt) overpressured

Venture Field

South Venture Field

South	South Venture O-59 (projected)	North
	Upper Missisauga	7
- Downer	Dependence in the second	La
1		a Sand
Le t	the second	- Antonia
		Fine
Sicher State	for the fort	"Y" Limestone
		3 A 4 5
the way the	the second second second	
and the second	1995 Field Developm	ent Plan)

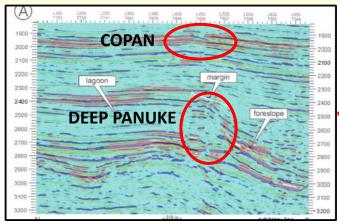

From SOEP field development plans (CNSOPB).

Nova Scotia & New Brunswick GCS in "Depleted" Fields

New Brunswick Tight Oil and Gas fields

- McCully, Stoney Creek, Dover
- Nitroglycerine & propane fracking

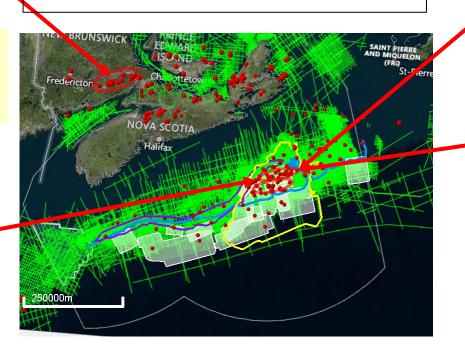
McCully Field


LeBlanc et al, 2011 Log PHI 4-8%. Air K .01-4 mD In situ K 0.02-0.07 mD

Stoney Creek

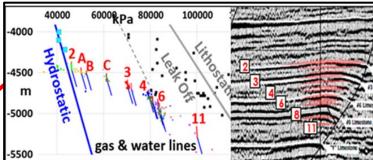
(~ 1940, St. Peter,2020)

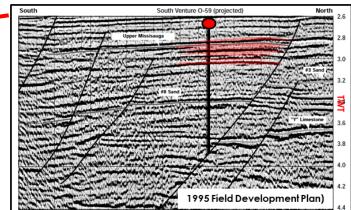
CoPan (4.6 Mt) & Deep Panuke (5.5 Mt)


- Both too small as depeleted fields
- Small silici-clastic drapes
- Minor production from carbonate bank margin

From Encana field development plans (CNSOPB).

Total GCS 113 Mt

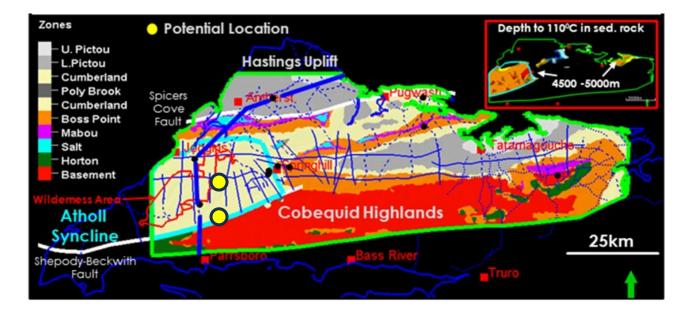

- Potentially useful, but very small by world standards
- GOM 15 Gt; UK 8 Gt; Norway 13 Gt
 - From atlases
- Calculated via material balance:
 - Produced volumes (CNSOPB)
 - Formation Volume Factors (CNSOPB)
 - 75 % storage efficiency (IEA)

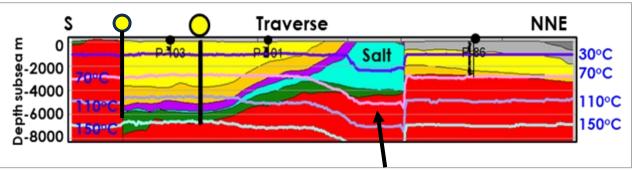

Sable Gas Project (5 fields)

- Shelf-margin rollover anticines above listric faults
- Best options: simple shallow hydrostatic reservoirs
- Alma (31 Mt) & N.Triumph (15 Mt) S. Venture (16 Mt) & Venture Sand 2
- Venture (21 Mt) & Thebaud (21 Mt) overpressured

Venture Field

South Venture Field

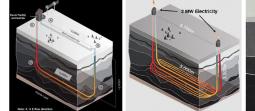


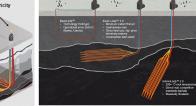

From SOEP field development plans (CNSOPB).

<u>Cumberland Basin</u>: 3D Modeling & Geothermal Calculations

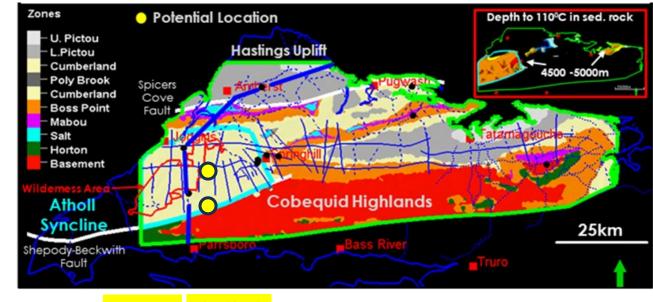
Cumberland Basin (DNRR)

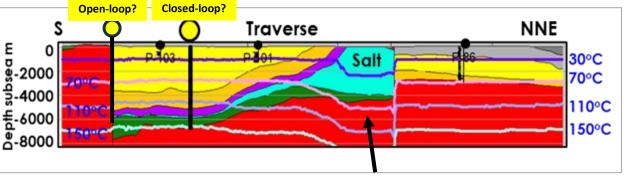
- One of four Maritimes Basin models at DNRR
- Framework: surface geology, wells, 2D seismic & simplified Waldron intepretations
- **Properties:** lithology, porosity, thermal conductivity, radiogenic heat generation
- Calculated: Temperature, EIP, Power via surface heat flow, Fourier's Law, & radiogenic heat (Bedard et al., 2019 – St. Lawrence Lowlands)

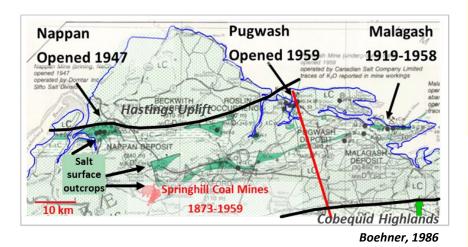


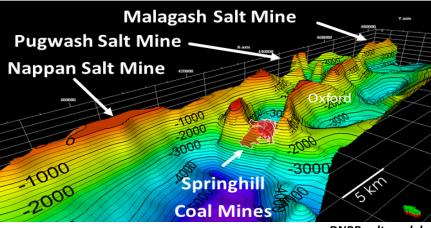

Increased heat loss to surface in salt – lose about a km of drill depth to power threshold

<u>Cumberland Basin</u>: Geothermal Results and Opportunities


Cumberland Basin (DNRR)

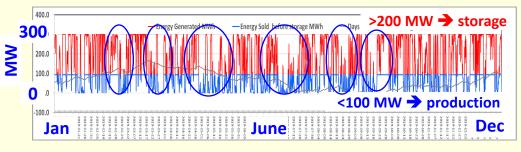

- One of four Maritimes Basin models at DNRR
- Framework: surface geology, wells, 2D seismic & existing Waldron intepretations
- Properties: lithology, porosity, thermal conductivity, radiogenic heat generation
- Calculated: Temperature, EIP, Power via surface heat flow, Fourier's Law, & radiogenic heat (Bedard et al., 2019 – St. Lawrence Lowlands)
- Energy In Place ~800 EJ and Power 13 GW (>120°C, <10km, 0.2 RF)
- Potential for 5-10 MW closed-loop projects
 - Eavour "loops": Alberta company
 - Heavily funded by the EU & industry


- Or, a "fracture-hunt" near bounding faults?
- Basis for Salt Storage & Springhill Mine projects



Increased heat loss to surface in salt - lose about a km of drill depth to power threshold

<u>Cumberland Basin:</u> Energy Storage & Renewables (EAGE) - Summary



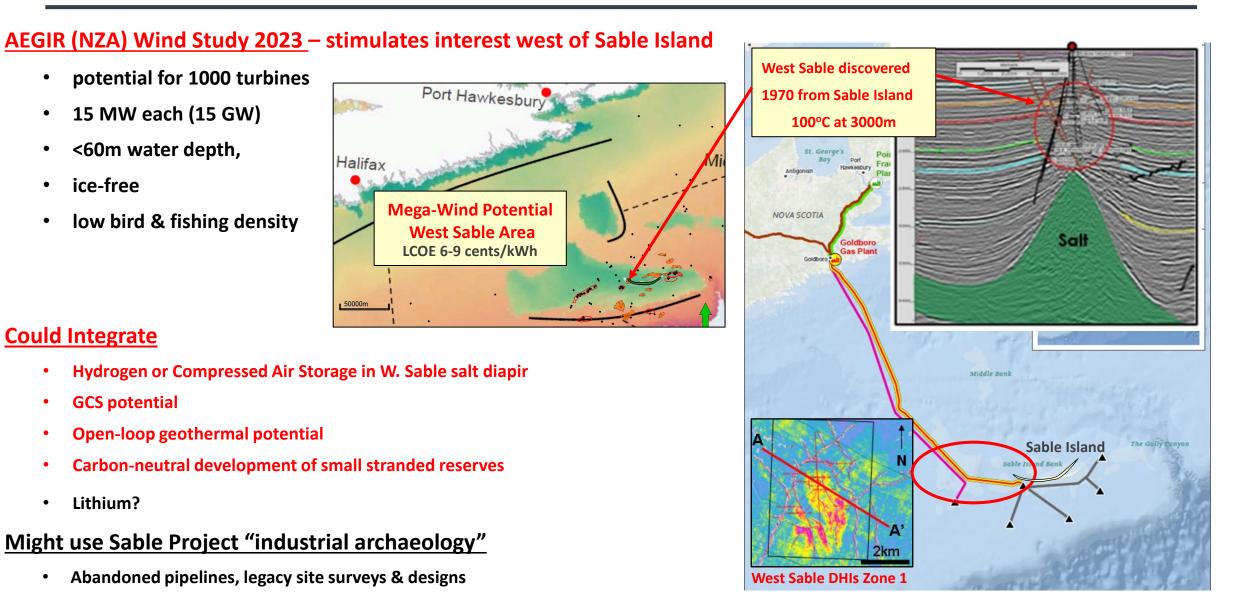
DNRR salt model

2023 EAGE Minus CO2 Student Challenge

Load-balance 300 MW of wind/solar energy with salt storage

- Teams favoured wind power over solar
- Used yearly wind power charts to balance production & storage

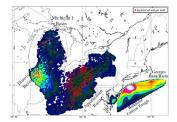
- Winning team used solar to balance 10-20 day calm spells
- Split on compressed air versus hydrogen (safety / capacity)
- Considered new and old caverns at Nappan & Oxford
- With sensible numbers two leading teams came up with +ve discounted cash flow economics (at 10-20 cents / kWh)
 - Important additional considerations: SHE, <u>community</u> <u>relations</u> and resource bookings (UNFC, SPE etc)
- Winners <u>UMBB (Boumerdes, Algeria) & IFP School (Paris)</u>
 - Won cash prizes & a trip to present their projects at the EAGE
 Global Energy Transition Conference opening session



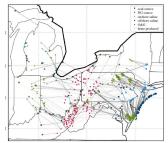
Marita Bradshaw –Geoscience Australia

Caverns typically formed by solution mining - shape controlled by varying a gas cushion at top of cavern

Paris, November 2023


CBC news Oct 16th- Peter Nicholson "Catching the Wind" Report. 2023 Aegir: Value Mapping Nova Scotia's Offshore Wind resources*.

- Reasonable idea of costs in the USA mid-west and NE.
- Schmelz WJ, Hochman G, Miller KG. 2020 (Rutgers)
- Looked at 138 power stations spatially matched to storage


Emissions Sites

Storage Sites

Spatial Matching

Capture \$/t

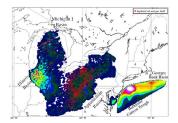
plant type	cost	high/low
coal	47	55/37
natural gas	76	114/49

Transport \$ /t per 250 km).

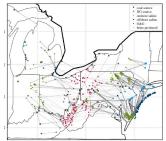
location	pipeline capacity	high	low
onshore	3 Mt	7.4	4.4
	10 Mt	3.8	2.3
	30 Mt	2.3	1.3
offshore	3 Mt	15.3	7.4
	10 Mt	49	3.5
	30 Mt	2.5	2.0

Storage \$/t

location	reservoir type	cost	high/low
onshore	oil and gas	5	13/1
	saline	6	15/3
offshore	saline	18	25/8
		$\overline{}$	


Scotian Shelf – Hypothetical "Sable GCS Project": Costs & Revenues (Undiscounted) 41

- Reasonable idea of costs in the USA mid-west and NE.
- Schmelz WJ, Hochman G, Miller KG. 2020 (Rutgers)
- Looked at 138 power stations spatially matched to storage


Emissions Sites

Storage Sites

Spatial Matching

Capture \$/t

plant type	cost	high/low
coal	47	55/37
natural gas	76	114/49

Transport \$ /t per 250 km).

location	pipeline capacity	high	low
onshore	3 Mt	7.4	4.4
	10 Mt	3.8	2.3
	30 Mt	2.3	1.3
offshore	3 Mt	15.3	7.4
	10 Mt	49	3.5
	30 Mt	2.5	2.0

Storage \$/t

location	reservoir type	cost	high/low
onshore	oil and gas	5	13/1
	saline	6	15/3
offshore	saline	18	25/8

Hypothetical 20 well "Sable GCS Project"

- Based on Rutgers' study costs could be ~\$20 Billion
 - (67% coal plants)
- Revenues could be ~\$30 Billion (2030 Carbon price)
 - \$125/t Carbon price
 - 20 wells injecting 0.5 Mtpa / well for 25 years

Costs	Mtpa	wells	years	Mt	unit cost	\$billion
Capture	0.5	20	25	250	57	14.167
Storage	0.5	20	25	250	18	4.5
Transport	0.5	20	25	250	2.5	0.625
Total						19.292
	Mtpa	wells	years	Mt	S/tonne	\$billion
Revenue	0.5	20	25	250	125	31.25

<u>"Sable GCS Project"</u>: Discounted Cash Flow Economic Model

Cash flow model for a for a 20 well GCS project

• CAPEX of \$5 billion over 5 years; OPEX \$100 million per year; Revenue \$1.25 billion per year.

Calculate Cumulative Net Cash Flow each year and the Internal Rate of Return (IRR in Excel)

• Both metrics become +ve in year 9 "Payout"

All models are wrong

Undiscounted

		Discount	Year	Year	Year	Year	Year	Year	Year	Year	Year	Year	Year	Year	Year	Year	Year	Year	Year	Year	Year	Year	Year
		Rate	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Capex	CAPEX USD Billions		-1.0	-1.0	-1.0	-1.0	-1.0																
Opex	OPEX USD Billions		-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1
•	# WELLS							20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20
	Mtpa per well							0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	USD per tonne							125	125	125	125	125	125	125	125	125	125	125	125	125	125	125	125
Revenue	REVENUE USD Billions							1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25
	Net Cash Flow each year		-1.1	-1.1	-1.1	-1.1	-1.1	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15
Cash Flow	Cumulative Net Cash Flow		-1.1	-2.2	-3.3	-4.4	-5.5	-4.35	-3.2	-2.05	-0.9	0.25	1.4	2.55	3.7	4.85	6	7.15	8.3	9.45	10.6	11.75	12.9
IRR	Internal Rate of Return (IRR)							-48%	-23%	-11%	-4%	1%	4%	7%	8%	10%	11%	12%	12%	13%	13%	14%	14%

597 "Payout"

<u>"Sable GCS Project"</u>: Discounted Cash Flow Economic Model

Cash flow model for a for a 20 well GCS project

• CAPEX of \$5 billion over 5 years; OPEX \$100 million per year; Revenue \$1.25 billion per year.

Calculate Cumulative Net Cash Flow each year and the Internal Rate of Return (IRR in Excel)

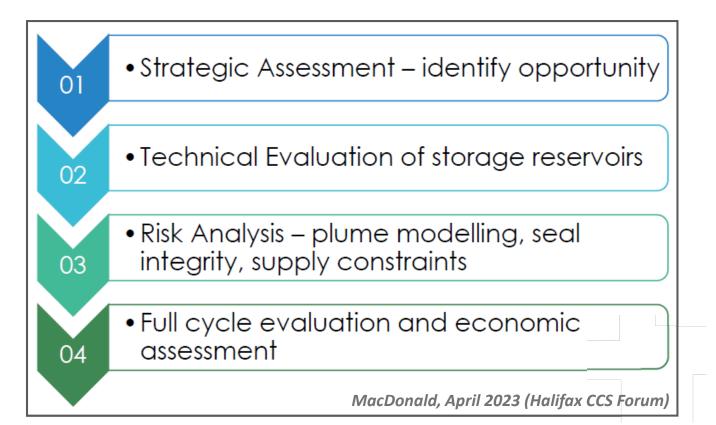
• Both metrics become +ve in year 9 "Payout"

All models are wrong

George E.P. Box

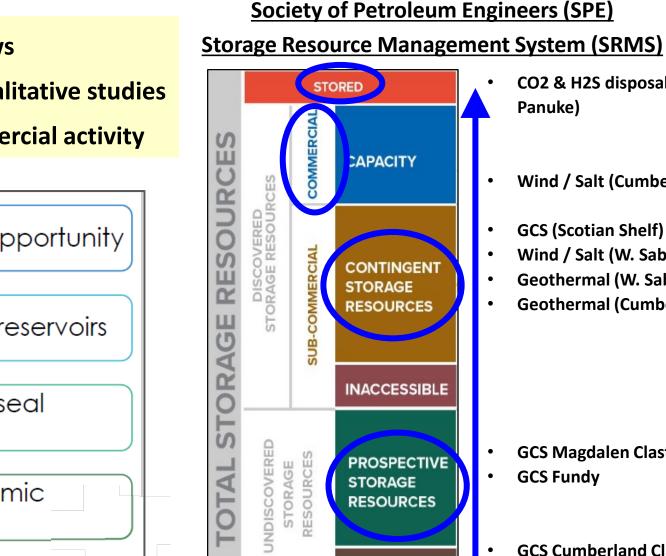
<u>Undiscounted</u>

		Discount	Year	Year	Year	Year	Year	Year	Year	Year	Year	Year	Year	Year	Year	Year	Year	Year	Year	Year	Year	Year	Year
		Rate	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Capex	CAPEX USD Billions		-1.0	-1.0	-1.0	-1.0	-1.0																
Opex	OPEX USD Billions		-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1
	# WELLS							20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20
	Mtpa per well							0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	USD per tonne							125	125	125	125	125	125	125	125	125	125	125	125	125	125	125	125
Revenue	REVENUE USD Billions							1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25
	Net Cash Flow each year		-1.1	-1.1	-1.1	-1.1	-1.1	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15
Cash Flow	Cumulative Net Cash Flow		-1.1	-2.2	-3.3	-4.4	-5.5	-4.35	-3.2	-2.05	-0.9	0.25	1.4	2.55	3.7	4.85	6	7.15	8.3	9.45	10.6	11.75	12.9
IRR	Internal Rate of Return (IRR)							-48%	-23%	-11%	-4%	1%	4%	7%	8%	10%	11%	12%	12%	13%	13%	14%	14%
Σ											Z	"Payo	out"			<u> </u>							


Discounted - NPV₀ payout still occurs in year 9, but NPV₆ payout occurs in Year 11 and NPV₁₂ pay out in Year 16

• Companies tend to view the discount rate as a "hurdle rate" they want to beat (based on their historical performance)

-						1														1	1	1	1
NPV ₀ N	Net Present Value (NPV)	0%	-1.1	-2.2	-3.3	-4.4	-5.5	-4.35	-3.2	-2.05	-0.9	47	1.4	2,55	3.7	4.85	6	7.15	8.3	9.45	10.6	11.75	12.9
NPV ₆ N	Net Present Value (NPV)	6%	-1.0	-2.0	-2.9	-3.8	-4.6	-3.8	-3.1	-2.3	-1.7	-1.0	-0.4	$\Sigma_1 \Sigma$	0.7	1.2	1.7	2.1	2.6	3.0	3.4	3.7	4.1
NPV ₁₂ N	Net Present Value (NPV)	12%	-1.0	-1.9	-2.6	-3.3	-4.0	-3.4	-2.9	-2.4	-2.0	-1.6	-1.3	-1.0	-0.7	-0.5	-0.3	-0.1	<u>767</u>	0.2	0.4	0.5	0.6
NPV ₁₈ N	Net Present Value (NPV)	18%	-0.9	-1.7	-2.4	-3.0	-3.4	-3.0	-2.7	-2.3	-2.1	-1.9	-1.7	-1.5	-1.4	-1.3	-1.2	-1.1	-1.0	-1.0	-0.9	-0.9	-0.8


How do we move forward?

- Multiple Resource Schemes and Workflows
- Need to move beyond conceptual and qualitative studies to influence policy, regulations and commercial activity

How do we move forward?

04

- CO2 & H2S disposal (Deep Panuke)
- Wind / Salt (Cumberland)
- GCS (Scotian Shelf)
- Wind / Salt (W. Sable)
- **Geothermal (W. Sable)**
- **Geothermal (Cumberland)**

- **GCS Magdalen Clastics**
- **GCS Fundy**
- **GCS Cumberland Clastics**
- **GCS Scotian Slope Clastics**

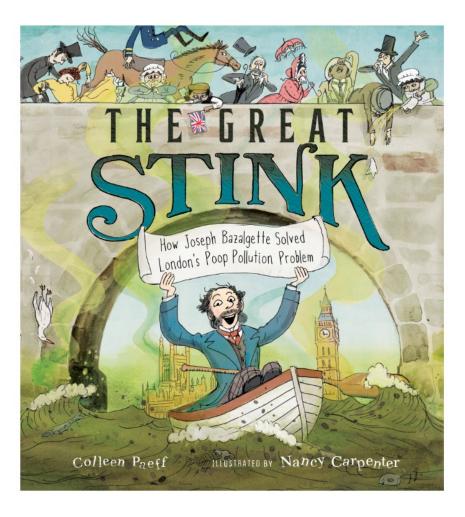
Multiple Resource Schemes and Workflows •

Need to move beyond conceptual and qualitative studies • to influence policy, regulations and commercial activity

• Strategic Assessment – identify opportunity 01 Technical Evaluation of storage reservoirs 02 Risk Analysis – plume modelling, seal integrity, supply constraints 03

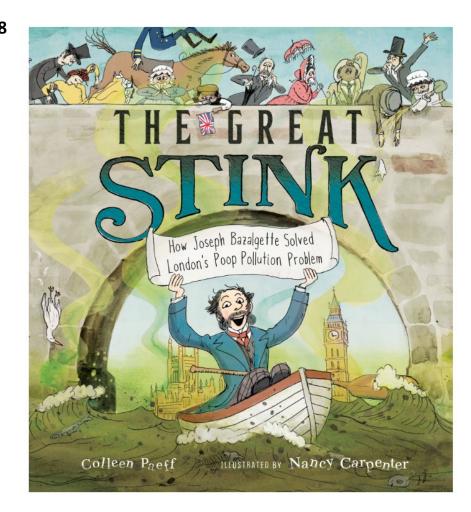
• Full cycle evaluation and economic assessment

Adam MacDonald, 2023 (Halifax CCS Forum)


https://www.globalccsinstitute.com/wp-content/uploads/2020/07/Global-Storage-Resource-Assessment -2019-Update -June-2020.pdf

INACCESSIBLE

Wrap Up – Not our First Rodeo


Global water and wastewater treatment

- Started big-time ~160 years ago
- Projected Market > <u>USD 497.5 Billion by 2030</u>

Wrap-Up

- Global water and wastewater treatment
 - Started big-time ~160 years ago
 - Projected Market > <u>USD 497.5 Billion by 2030</u>

Final Thoughts

- Should we treat CO₂ emissions as a waste disposal problem anyway? (Costs about \$100 / tonne to take garbage to the landfill).
- On a cost-benefit basis, do we want to tackle climate change?
- Thanks to students, colleagues and friends at Dalhousie, the NS DNRR & the EAGE Student Affairs Committee

Email: Billrichards888@hotmail.com

Global Newswire quote Precedence Research - a Canada/India based company and one of the leading providers of strategic market insights.